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Abstract

In this study, a three-dimensional (3-D) free vibration analysis of thick annular plates resting on elastic foundation with

different combinations of free, soft simply supported, hard simply supported and clamped boundary conditions at the

inner and outer edges of the annular plate is presented on the basis of the polynomials-Ritz method. The elastic foundation

is considered as a Pasternak model with adding a shear layer to the Winkler model. The analysis procedure is based on the

linear, small strain, and 3-D elasticity theory. In this analysis method, a set of orthogonal polynomial series in cylindrical

polar coordinate is used to extract eigenvalue equation yielding the natural frequencies and mode shapes for the annular

plates. The accuracy of these results is verified by appropriate convergence studies and checked with the available

literature, finite element method (FEM) analysis and the Mindlin theory. Furthermore, the effect of the foundation

stiffness parameters, thickness–radius ratio, inner–outer radius ratio and different combinations of boundary conditions

on the ill-conditioning of the mass matrix as well as on the vibration behavior of the annular plates is investigated. Finally,

the validity and the range of applicability of the results obtained on the basis of the Mindlin and classical plate theories for

a thin and moderately thick annular plate with different values of the Winkler foundation stiffness are graphically

presented through comparing them with those obtained by the present 3-D p-Ritz solution.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A plentiful number of plates resting on elastic foundations with different shapes, sizes, thickness variations
and boundary conditions have been the subject of numerous investigations and those play an important role in
aerospace, marine, civil, mechanical, electronic and nuclear engineering problems. For example, these types of
plates are used in various kinds of industrial applications such as the analysis of reinforced concrete pavements
of roads, airport runways and foundations of buildings.

An excellent survey of the research work on the free vibration of annular plates has been done by Leissa [1].
A vast amount of literature for free vibration studies of circular and annular plates have been performed with
two-dimensional (2-D) theories. The natural frequencies of Mindlin annular plates under nine different
combinations of free, simply supported and clamped boundary conditions have been reported by Irie et al. [2].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Such solutions are generally valid for the lower frequency, flexural modes of moderately thick plate. In recent
years, the excellent studies have been done for both completely free circular and annular plates by So and
Leissa [3] and circular plates with different edge boundary conditions by Liew and Yang [4] using three-
dimensional (3-D) theory of elasticity. Furthermore, many different combinations of edge boundary
conditions for 3-D free vibration analysis of annular plates have already been employed and studied by Rokni
et al. [5] for variable thickness and Liew and Yang [6] for uniform thickness based on polynomials-Ritz
analysis and by Zhou et al. [7] using Chebyshev–Ritz method.

When the shear stiffness of the foundation is considered, the two-parameter foundations, such as
Filonenko-Borodich [8], Pasternak [9], generalized [10], and Vlasov and Leontev [11] foundations, can be used.
A number of papers have dealt with natural frequencies of plates of uniform/non-uniform thickness, using
variety of methods in order to investigate the effect of elastic foundation. Galerkin method with three terms
has been employed by Bolton [12] to analyze static response of circular plates on Winkler [13] elastic
foundation. Dumir [14] presented an approximate one term ‘‘space-mode solution’’ of the governing von
Kármán-type equations for vibration analysis of thin circular plates on Winkler, Pasternak and nonlinear
Winkle elastic foundation. The vibration of a plate supported laterally by an elastic foundation has been
discussed on the first page of Leissa’s celebrated book [15]. Leissa deduced that the effect of a full Winkler
foundation merely increases the square of the natural frequency of the plate by a constant. The same
conclusion was obtained by Salari et al. [16] to study the effect of Winkler elastic foundation on completely
free circular plates.

Many researchers have carried out their research on the vibration of the Mindlin plates resting on elastic
foundation. The vibration of polar orthotropic circular plates on an elastic foundation has been investigated
by Gupta et al. [17]. The Mindlin shear deformable plate theory was employed and the Chebyshev collocation
method was applied to obtain the frequency parameters for the circular plates [17]. Ju et al. [18] developed a
finite element model to study the vibration of Mindlin plates with multiple stepped variations in thickness and
resting on non-homogeneous elastic foundations. Frequency parameters and vibration mode shapes for
stepped rectangular and circular plates resting on non-homogenous elastic foundations were presented [18].

In recent years, the Ritz method has been applied by research workers to study the plate vibration of
different shapes. Gupta et al. [19,20] studied the effect of elastic foundation on axisymmetric vibrations of
polar orthotropic circular plates of variable thickness by taking approximating polynomials in Rayleigh–Ritz
method. Laura et al. [21] analyzed the free vibration of a solid circular plate of linearly varying thickness
attached to Winkler foundation using the Ritz method. Liew et al. [22] employed the differential quadrature
method for studying the Mindlin’s plate on Winkler foundation. Moreover, Zhou et al. [23] described an
excellent investigation of the 3-D free vibration of thick circular plates resting on Pasternak foundation by
using the Chebyshev–Ritz method.

To distinguish the present work from those available in the literature, the main objective of this paper is
focused on 3-D free vibration analysis of thick annular plates resting on elastic foundation with different
combinations of free, soft simply supported, hard simply supported and clamped boundary conditions at the
inner and outer edges by using the p-Ritz method. The elastic foundation is considered as a Pasternak model
(two-parameter foundation) by adding a shear layer to the Winkler model in order to describe the mechanical
behavior of the foundation. The polynomials-Ritz model based on sets of trigonometric functions in the
circumferential direction, and algebraic polynomials in the radial and thickness directions multiplied by
boundary functions is developed as the admissible functions of displacement components u, v, and w in the
radial, circumferential, and thickness directions, respectively. The boundary functions are used in the
admissible functions to satisfy the geometric boundary conditions of the plate.

In order to determine the number of terms in polynomial displacement functions, the convergence study
firstly is carried out. Afterwards, the influence of different parameters of the annular plate as well as the
number of terms used in the radial direction on the instability of the mass matrix is studied to nullify the ill-
conditioning phenomenon. The presented results are compared with existing ones in the open literature [23] to
show the accuracy. This comparison is also performed with the FEM analysis and the Mindlin
results presented by the authors for the first time. The influence of the foundation stiffness parameters,
thickness–radius ratio, inner–outer radius ratio and different combinations of boundary conditions
on the frequency parameters of the plate is also studied. Moreover, the validity and the range of applicability
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of the Mindlin and the CLPT results are studied for a thin and moderately thick annular plate by
comparing them with those acquired by the present 3-D p-Ritz solution. The variation of the
frequency parameters against the foundation stiffness parameters is also presented for various inner–outer
radius ratios. Finally, 2- and 3-D plots of the mode shapes are given for different combinations of boundary
conditions.

2. Theoretical formulation

Consider a thick annular plate with outer radius ao, inner radius ai and thicknesses h resting on Pasternak
elastic foundation, as depicted in Fig. 1. The plate geometry and dimensions are defined in an orthogonal
cylindrical coordinate system ðr; y; zÞ.

For free vibrations, the displacement components of the 3-D elastic body may be expressed as

uðr; y; z; tÞ ¼ c1ðr; y; zÞ e
jot,

vðr; y; z; tÞ ¼ c2ðr; y; zÞ e
jot,

wðr; y; z; tÞ ¼ c3ðr; y; zÞ e
jot, ð1Þ

where t is the time, o denotes the natural frequency of vibration and j ¼
ffiffiffiffiffiffiffi
�1
p

.
Considering the circumferential symmetry of the annular plate about the coordinate y, the displacement

amplitude functions can be written as

c1ðr; z; yÞ ¼ cosðnyÞc̄1ðr; zÞ,

c2ðr; z; yÞ ¼ sinðnyÞc̄2ðr; zÞ,

c3ðr; z; yÞ ¼ cosðnyÞc̄3ðr; zÞ, ð2Þ

where the non-negative integer n represents the circumferential wavenumber of the corresponding mode shape.
It is obvious that n ¼ 0 means the axisymmetric vibration. Rotating the symmetry axes by p/2, another set of
free vibration modes can be obtained, corresponding to an interchange cosðnyÞ and sinðnyÞ in Eq. (2).
However, in such a case, n ¼ 0 means representing torsional vibration.

The strain energy V of a 3-D elastic annular plate undergoing free vibration in circumferential coordinates is
expressed by terms of the strains ð�ijÞ as

V ¼ ð1=2Þ

Z a0

ai

Z 2p

0

Z h=2

�h=2
½lðK1Þ þ Gf2ðK2Þ þ ðK3Þg�rdrdydz, (3)

where l and G are the Lame constants for a homogeneous and isotropic material, which are expressed in terms
of Young’s modulus E and the Poisson’s ratio n by

l ¼ nE=½ð1þ nÞð1� 2nÞ�; G ¼ E=½2ð1þ nÞ�,

and

K1 ¼ �rr þ �yy þ �zz; K2 ¼ �
2
rr þ �

2
yy þ �

2
zz; K3 ¼ �

2
ry þ �

2
yz þ �

2
rz. (4)
Fig. 1. Geometry and dimensions of an annular plate resting on Pasternak elastic foundation.
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Using the displacement field given in Eq. (1), the strain components �ij ði; j ¼ r; y; zÞ for small deformation
are defined as follows:

�rr ¼
qu

qr
; �yy ¼

1

r
uþ

qv

qy

� �
; �zz ¼

qw

qz
,

�ry ¼
1

r

qu

qy
þ

rqv

qr
� v

� �
; �rz ¼

qu

qz
þ

qw

qr
; �yz ¼

1

r

rqv

qz
þ

qw

qy

� �
. ð5Þ

The kinetic energy for free vibration is

T ¼ ðr=2Þ
Z ao

ai

Z 2p

0

Z h=2

�h=2
ð _u2 þ _v2 þ _w2Þrdrdy dz, (6)

and the strain energy owing to the Pasternak foundation model is

P ¼ ð1=2Þ

Z ao

ai

Z 2p

0

kwðwÞ
2
þ kp

qw

qr

� �2

þ
qw

rqy

� �2
 ! !�����

z¼�h=2

rdrdy, (7)

where r is the mass density per unit volume, kw is the Winkler foundation stiffness and kp is constant showing
the effect of shear interaction of the vertical elements.

For generality and convenience in the mathematical formulation, the following dimensionless parameters
are introduced:

r� ¼
r

ao

; z� ¼
z

h
; d ¼

h

ao

; R ¼
ai

ao

. (8)

The Lagrangian energy function P of the plate is defined as follows:

P ¼ Vmax � Tmax þ P̄, (9)

where

Vmax ¼
Gho

2ao

Z 1

R

Z 1=2

�1=2

l
G

K̄1 þ 2K̄2

� �
L1 þ K̄3L2

� 	
r� dr� dz�, (10)

Tmax ¼
1

2
ro2aoh

Z 1

R

Z 1=2

�1=2
L1ðc̄

2

1 þ c̄
2

3Þ þ L2c̄
2

2

n o
r� dr� dz, (11)

P̄ ¼
hG

2ao

� �Z 1

R

L1K̄wðc̄
2

3Þ þ L1K̄p

qc̄3

qr�

� �2

þ
qc̄3

r�qy

� �2
 ! !�����

z�¼�1=2

r� dr�, (12)

in which

K̄1 ¼ �̄r�r� þ �̄yy þ �̄z�z� ,

K̄2 ¼ �̄
2
r�r� þ �̄

2
yy þ �̄

2
z�z� ,

K̄3 ¼ �̄
2
r�y þ �̄

2
yz� þ �̄

2
r�z� , (13)

�̄r�r� ¼
qc̄1

qr�
; �̄yy

1

r�
c̄1 þ

qc̄2

qy

� �
; �̄z�z� ¼

qc̄3

d qz�
,

�̄r�y ¼
1

r�
qc̄1

qy
þ

r�qc̄2

qr�
� c̄2

� �
; �̄r�z� ¼

qc̄1

d qz�
þ

qc̄3

qr�
; �̄yz� ¼

1

r�
r�qc̄2

d qz�
þ

qc̄3

qy

� �
, ð14Þ

K̄w ¼
kwa2

0

hGd4
¼

kwa0

d5G
; K̄p ¼

kp

d4hG
. (15)
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In addition, L1 and L2 in Eqs. (10)–(12) are defined by

L1 ¼

Z 2p

0

cos2ðnyÞdy ¼
2p if n ¼ 0;

p if nX1;

(
(16)

L2 ¼

Z 2p

0

sin2ðnyÞdy ¼
0 if n ¼ 0;

p if nX1:

(

The displacement amplitude functions may be assumed in the form of double series of algebraic
polynomials multiplied by boundary functions:

c̄1ðr
�; z�Þ ¼ G1ðr

�Þ
XN1

i¼0

XN2

j¼0

aijðr
�Þ

i
ðz�Þj,

c̄2ðr
�; z�Þ ¼ G2ðr

�Þ
XN1

i¼0

XN2

j¼0

bijðr
�Þ

i
ðz�Þj,

c̄3ðr
�; z�Þ ¼ G3ðr

�Þ
XN1

i¼0

XN2

j¼0

cijðr
�Þ

i
ðz�Þj, ð17Þ

where

Geðr
�Þ ¼ Heðr

�ÞIeðr
�Þ ðe ¼ 1; 2; 3Þ, (18)

in which aij , bij and cij are the undetermined coefficients; i and j are integer; N1 and N2 are the highest degrees
taken in the double summation, and the Geðr

�Þ; ðe ¼ 1; 2; 3Þ are functions depending upon the geometric
boundary conditions to be enforced. It should be emphasized that in the Ritz method, the displacement
functions u, v and w should satisfy the geometric boundary conditions of the plate. The boundary function
components in outer edge Ieðr

�Þ and inner edge Heðr
�Þ; ðe ¼ 1; 2; 3Þ of annular plate corresponding to different

combinations of boundary conditions used in this paper are given in Table 1.
It should be noted that Eq. (3) is only appropriate for simply supported and clamped plates in which vertical

displacements are equal to zero at the edge of the plate (r ¼ R and z ¼ �h=2). If there are vertical
displacements, a complimentary potential energy V�max, provided by the boundary spring k3G [23], should be
added into the potential energy of the plate-foundation system:

V�max ¼ L1k3c
2
3jr¼R;r¼1;z�¼�1=2. (19)

The Lagrangian energy function P of the plate is defined as follows:

P ¼ Vmax þ V�max � Tmax þ P̄, (20)

for a plate having vertical displacement at the plate edge at r ¼ R, r ¼ 1 and z� ¼ �1=2, while for a plate
having zero vertical displacement, P is obtained from Eq. (9).
Table 1

Boundary functions for different combinations of boundary conditions

Boundary conditions (outer–inner edges) I1ðr
�Þ I2ðr

�Þ I3ðr
�Þ H1ðr

�Þ H2ðr
�Þ H3ðr

�Þ

Completely free–free 1 1 1 1 1 1

Free–soft simply supported 1 1 1 1 1 ðr� � RÞ

Free–hard simply supported 1 1 1 1 ðr� � RÞ ðr� � RÞ

Free–clamped 1 1 1 ðr� � RÞ ðr� � RÞ ðr� � RÞ

Soft-simply supported–soft simply supported 1 1 ðr� � 1Þ 1 1 ðr� � RÞ

Soft simply support–clamped 1 1 ðr� � 1Þ ðr� � RÞ ðr� � RÞ ðr� � RÞ

Hard simply supported–free 1 ðr� � 1Þ ðr� � 1Þ 1 1 1

Clamped–free ðr� � 1Þ ðr� � 1Þ ðr� � 1Þ 1 1 1

Clamped–clamped ðr� � 1Þ ðr� � 1Þ ðr� � 1Þ ðr� � RÞ ðr� � RÞ ðr� � RÞ
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The eigenvalue problem is formulated by minimizing the Lagrangian energy functional with respect to the
arbitrary coefficients aij , bij and cij . Thus we have

qP
qaij

¼ 0;
qP
qbij

¼ 0;
qP
qcij

¼ 0, (21)

which in turn lead to the following eigenfrequency equation in the matrix form as

ðK� b2MÞC ¼ 0, (22)

where

K ¼

k11 k12 k13

k22 k23

sym k33

2
64

3
75, (23)

M ¼

m11 0 0

m22 0

sym m33

2
64

3
75, (24)

C ¼

a

b

c

8><
>:

9>=
>;, (25)

and b ¼ oao

ffiffiffiffiffiffiffiffiffiffiffi
rG�1

p .
d is the frequency parameter.

For axisymmetric mode

k11 k13

Sym k33

" #
� b2

m11 0

Sym m33

" # !
a

c

� �
¼

0

0

� �
; n ¼ 0, (26)

and for torsional mode

ð½k22� � b2½m22�Þfbg ¼ f0g; n ¼ 0, (27)

in which kij and mii ði; j ¼ 1; 2; 3Þ are the stiffness sub-matrices and the diagonal mass sub-matrices,
respectively. The column vectors a, b and c are determined with unknown coefficients as follows:

fag ¼ a11 . . . a1j a21 . . . a2j . . . ai1 . . . aij

n oT

,

fbg ¼ b11 . . . b1j b21 . . . b2j . . . bi1 . . . bij

n oT

,

fcg ¼ c11 . . . c1j c21 . . . c2j . . . ci1 . . . cij

n oT

, ð28Þ

Solving eigenvalue equations (21)–(24) for nX1 or Eqs. (26) and (27) for n ¼ 0 yield the frequency
parameters b.

3. Numerical results and discussion

Numerical solutions for 3-D vibration analysis of thick annular plates for various inner–outer radius ratio
and thickness–radius ratio with different combinations of free, soft simply supported, hard simply supported
and clamped outer and inner boundaries, resting on elastic foundation, are computed. For all results presented
here, the Poisson ratio is assumed to be n ¼ 0:3 and also, the vibration frequency o is expressed in terms of a
non-dimensional frequency parameter b ¼ oao

ffiffiffiffiffiffiffiffiffiffiffi
rG�1

p .
d. In order to check the stability of the proposed

approach as well as to validate the accuracy of that, some convergence tests and comparison studies are
performed.
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For the convergence study, the frequency parameters of the completely free annular plate resting on
Pasternak elastic foundation with thickness–radius ratio d ¼ 0:2, inner–outer radius ratio R ¼ 0:15, and
stiffness parameters K̄wK̄P ¼ ð5; 1Þ, (50, 5), and (100, 10) are performed in Table 2 for four circumferential
wavenumbers n ¼ 0, 1, 2, and 3, while the first three modes s ¼ 1, 2, and 3 are considered for each value of n.
Six groups of series terms are taken into account, as shown in Table 2, where N1 means the term number used
in the radial direction and N2 means that used in the thickness direction for each displacement component.
From the frequency parameters presented in this table, it can be observed that the used terms are set to be
N1 ¼ 10 and N2 ¼ 5 for five significant figures.
Table 2

Convergence of the frequency parameters for a thick annular plate resting on Pasternak elastic foundation with both outer and inner edges

free (F–F) for thickness–radius ratio d ¼ 0.2 and inner–outer radius ratio R ¼ 0.15

K̄w K̄P CWN (n) MS (s) N1�N2

7� 5 8� 5 9� 5 10� 5 10� 6 11� 5

5 1 0 1 11.029 11.029 11.029 11.029 11.029 11.029

2 16.035 16.034 16.034 16.034 16.034 16.034

3 21.978 21.976 21.974 21.973 21.973 21.973

1 1 12.518 12.518 12.518 12.518 12.518 12.518

2 13.894 13.894 13.894 13.894 13.894 13.894

3 16.744 16.744 16.744 16.744 16.744 16.744

2 1 10.284 10.279 10.277 10.277 10.277 10.277

2 15.732 15.731 15.731 15.731 15.731 15.731

3 20.521 20.519 20.518 20.518 20.518 20.518

3 1 17.830 17.828 17.827 17.827 17.827 17.827

2 19.780 19.780 19.780 19.780 19.780 19.780

3 28.998 28.997 28.996 28.995 28.995 28.995

50 5 0 1 15.918 15.918 15.918 15.918 15.918 15.918

2 31.910 31.910 31.910 31.910 31.910 31.910

3 39.684 39.683 39.683 39.683 39.683 39.683

1 1 13.826 13.826 13.826 13.826 13.826 13.826

2 29.975 29.975 29.975 29.975 29.975 29.975

3 32.777 32.777 32.777 32.777 32.777 32.777

2 1 10.289 10.284 10.282 10.282 10.282 10.282

2 20.423 20.421 20.420 20.420 20.420 20.420

3 32.541 32.534 32.531 32.529 32.529 32.529

3 1 17.844 17.841 17.840 17.840 17.840 17.840

2 28.742 28.741 28.740 28.739 28.739 28.739

3 39.102 39.095 39.092 39.090 39.090 39.090

100 10 0 1 15.927 15.927 15.927 15.927 15.927 15.927

2 38.159 38.159 38.159 38.159 38.159 38.159

3 43.669 43.669 43.668 43.668 43.668 43.668

1 1 13.827 13.827 13.827 13.827 13.827 13.827

2 30.691 30.691 30.691 30.691 30.691 30.691

3 34.779 34.779 34.779 34.779 34.779 34.779

2 1 10.290 10.285 10.283 10.282 10.282 10.282

2 20.430 20.428 20.427 20.427 20.427 20.427

3 32.964 32.956 32.952 32.951 32.951 32.951

3 1 17.844 17.842 17.841 17.840 17.840 17.840

2 28.798 28.796 28.796 28.795 28.795 28.795

3 41.476 41.451 41.439 41.434 41.434 41.434
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It is interesting to note that the convergence rate, except for circumferential wavenumber n ¼ 0, is
improving for frequency parameter by decreasing the stiffness parameters. Table 3 demonstrates further the
convergence patterns of thick annular plate resting on the Pasternak elastic foundation with different
combinations of boundary conditions (free outer edge and soft simply supported, hard simply supported
and clamped inner edge), thickness–radius ratio d ¼ 0:25, inner–outer radius ratio R ¼ 0:2 and stiffness
Table 3

Convergence of the frequency parameters for a thick annular plate resting on Pasternak elastic foundation with different combinations of

boundary conditions when R ¼ 0.2, d ¼ 0.25, Kw ¼ 10 and Kp ¼ 2

CWN (n) MS (s) N1�N2

7� 5 8� 5 9� 5 10� 5 10� 6

An annular plate with free outer edge and soft simply supported inner edge (F– SS)

0 1 12.104 12.103 12.101 12.101 12.101

2 14.485 14.485 14.485 14.485 14.485

3 26.742 26.740 26.738 26.737 26.737

1 1 11.115 11.110 11.108 11.108 11.108

2 13.711 13.708 13.707 13.707 13.707

3 17.163 17.160 17.159 17.159 17.159

2 1 7.5603 7.5560 7.5556 7.5555 7.5555

2 15.825 15.823 15.821 15.820 15.820

3 17.055 17.050 17.048 17.048 17.048

3 1 14.019 14.017 14.015 14.015 14.015

2 19.804 19.799 19.796 19.795 19.795

3 23.327 23.325 23.323 23.322 23.322

An annular plate with free outer edge and hard simply supported inner edge (F– Sh)

0 1 12.104 12.103 12.101 12.101 12.101

2 14.485 14.485 14.485 14.485 14.485

3 26.742 26.740 26.738 26.737 26.737

1 1 5.6505 5.6496 5.6493 5.6491 5.6491

2 12.596 12.588 12.584 12.582 12.582

3 13.923 13.911 13.905 13.902 13.902

2 1 9.9721 9.9710 9.9705 9.9703 9.9703

2 16.159 16.148 16.142 16.139 16.139

3 17.778 17.767 17.762 17.760 17.760

3 1 14.474 14.468 14.465 14.465 14.465

2 19.822 19.809 19.803 19.800 19.800

3 23.728 23.721 23.719 23.718 23.718

An annular plate with free outer edge and clamped inner edge (F– C)

0 1 14.079 14.068 14.061 14.059 14.059

2 15.538 15.531 15.528 15.527 15.527

3 27.390 27.381 27.376 27.374 27.374

1 1 6.2329 6.2318 6.2313 6.2310 6.2310

2 13.394 13.393 13.393 13.393 13.393

3 14.682 14.676 14.670 14.669 14.669

2 1 10.461 10.447 10.442 10.440 10.440

2 16.222 16.216 16.213 16.212 16.212

3 18.084 18.073 18.066 18.063 18.063

3 1 14.586 14.580 14.578 14.577 14.577

2 19.805 19.803 19.802 19.802 19.802

3 23.828 23.816 23.811 23.809 23.809
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parameters K̄w ¼ 10 and K̄P ¼ 2. The effect of different boundary conditions on the rate of convergence of the
frequency parameter is shown in this table. A rapid convergence has been obtained for annular plate with free
outer edge and soft simply supported inner edge (F–SS), (i.e. 10� 5 terms) in order to achieve five significant
figures; while for free outer edge and hard simply supported inner edge (F–Sh) and free outer edge and
clamped inner edge (F–C), frequency parameters converge to four significant figures using the same terms
(i.e. 10� 5 terms) of the Ritz polynomials. Although slightly higher terms are needed for free–hard simply
supported and free–clamped annular plate to achieve five-digit accuracy, it is impossible to increase the order
of the Ritz polynomials due to the ill-conditioning problem.

Polynomial functions are well known to be ill-conditioned, e.g., the computer can hardly find the difference
between x10 and x11 within 0oxo1. The ill-conditioned matrix in the polynomials–Ritz method can lead to
delay convergence or produce inaccurate frequency parameters. As a consequence, finding an appropriate
term number especially used in the radial direction, i.e. N1, seems to be necessary to avoid ill-conditioning
problem in the mass matrix. In order to achieve this purpose, Fig. 2 is a graph of the condition number of the
mass matrix against N1 for the annular plate resting on the Pasternak elastic foundation with thickness–radius
ratio d ¼ 0:25, inner–outer radius ratio R ¼ 0:2, and stiffness parameters K̄wK̄P ¼ ð10; 2Þ with different
combinations of boundary conditions when ðn; sÞ ¼ ð1; 1Þ. The number of terms used in the thickness direction,
i.e. N2, is taken equal to 5 in Figs. 2–5. It seems to be necessary to point out that the condition number of mass
matrix for vibrating plate problems is discussed by Leung et al. [24] for the first time. The condition number is
defined as the ratio of the largest singular value to the smallest singular value and is a measure of the ill-
conditioning of the matrix. It can be seen in Fig. 2 that for the completely free annular plate with the term
number greater than 11 and for the annular plate soft- and hard-simply supported and clamped at the inner
edge and free at the outer edge with the term number greater than 10, the condition number of the mass matrix
is near and above the order 1018 which is the limit of the precision considered in this study. In other words, for
the completely free annular plate with the term number greater than 11, for instance, numerical inaccuracies in
obtaining frequency parameters begin to take effect. Fig. 2 tells us why no frequency parameter is presented
for free–soft simply supported, free–hard simply supported and free–clamped annular plate when N1 and N2

are considered to be 11 and 5, respectively.
To the best of the authors’ knowledge, the effect of the Winkler foundation stiffness parameter on the ill-

conditioning problem is investigated as an innovative study for various values of thickness–radius and
inner–outer radius ratios with different combinations of boundary conditions, as shown in Figs. 3–5. Herein,
Fig. 2. The term number N1 versus condition number of the mass matrix for completely free annular plate (R ¼ 0.2) with thickness–radius

ratio d ¼ 0.25 and frequency parameters ðK̄w; K̄PÞ ¼ ð10; 2Þ when (n, s) ¼ (1, 1) and N2 ¼ 5. (,) free–free plate; (B) free–soft simply

supported plate; (J) free–hard simply supported plate; (&) free–clamped plate.
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Fig. 3. The term number N1 versus the Winkler foundation stiffness K̄w for completely free annular plate (R ¼ 0.15) when (n, s) ¼ (0, 1),

K̄p ¼ 0 and N2 ¼ 5. (� ) d ¼ 0.01; (&) d ¼ 0.1; (J) d ¼ 0.3.

Fig. 4. The term number N1 versus the Winkler foundation stiffness K̄w for completely free annular plate with thickness–radius ratio

d ¼ 0.3 when (n, s) ¼ (0, 1), K̄p ¼ 0 and N2 ¼ 5. (J) R ¼ 0.1; (&) R ¼ 0.3; (B) R ¼ 0.4; (,) R ¼ 0.5.
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K̄wi is defined as the largest K̄w for which the mass matrix deals with no ill-conditioning problem for the
selected terms of the Ritz polynomials. The primary conclusion drawn from Figs. 3–5 is that K̄wi will decrease
with the increase of the term number N1.

Fig. 3 shows the variation of the Winkler foundation stiffness with the term number N1 for different values
of thickness–radius ratio. It is worthwhile to mention that the enhancement of the thickness–radius ratio
results in increasing the values of K̄wi.

From Fig. 4, it is figured out that as the inner–outer radius ratio is diminished, the values of K̄wi increase.
When the number of terms used in the radial direction is considered to be 10 for the inner–outer radius ratio
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Fig. 5. The term number N1 versus the Winkler foundation stiffness K̄w for an annular plate (R ¼ 0.15) with thickness–radius ratio

d ¼ 0.3 when (n, s) ¼ (0, 1), K̄p ¼ 0 and N2 ¼ 5: (J) free–clamped plate; (&) free–simply supported plate; (B) free–free plate.

Table 4

The number of terms used in this paper for different combinations of boundary conditions

Boundary conditions (outer–inner edges) F–F F–SS F–Sh F–C

Term number used in radial direction N1 10 10 9 9

Term number used in thickness direction N2 5 5 5 5

Number of significant figures 5 5 4 4
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0.4 and 0.5, the Winkler foundation stiffness K̄w is very close to zero to nullify the ill-conditioning problem in
the mass matrix.

In Fig. 5, with the increase of the edge constraint (in the order from free to simply supported to clamped),
the values of K̄wi will reduce.

It should be pointed out that a delicate balance between the high accuracy of the frequency parameter
and the amount of the Winkler foundation stiffness K̄w needs to be taken into account for different
values of the term number N1. For example, when the Winkler foundation stiffness is changed from 100 to
1000 for an annular plate with the free outer edge and clamped inner edge, the term number N1 must be
taken equal to 9 instead of 10 to avoid the ill-conditioning problem in the mass matrix. However, the accuracy
of the frequency parameter will decrease. Considering Tables 1 and 2 as well as Figs. 2–5, the values of the
term number are selected according to Table 4 for different combinations of boundary conditions so that
the next results presented in this paper have an acceptable accuracy without any ill-conditioning for the
mass matrix.

The 3-D free vibrations of thick circular plate (R ¼ 10�30) resting on Pasternak elastic foundation with
different boundary conditions, thickness–radius ratio d ¼ 0:25, and stiffness parameters K̄wK̄P ¼ ð10; 1Þ and
(100, 10) are presented in Table 5 together with the published values of Zhou et al. [23]. Note that the
frequency results of Zhou et al. [23] are obtained from a Chebyshev–Ritz method. From Table 5, it
is found that the present 3-D p-Ritz solution for this kind of plate is in close agreement with Chebyshev–Ritz
solution.

An interesting comparison study of the 3-D and the Mindlin results with the converged finite element
solutions is shown in Table 6 for an annular plate resting on the Winkler foundation with different
combinations of boundary conditions, thickness–radius ratio d ¼ 0:1, inner–outer radius ratio R ¼ 0:15 and
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Table 5

Comparison of the frequency parameters of circular plates with different boundary conditions between the present 3-D p-Ritz solution and

the 3-D Chebyshev–Ritz method [23] when R ¼ 10�30 and d ¼ 0.25

CWN (n) MS (s) K̄w ¼ 10, K̄p ¼ 1 K̄w ¼ 100, K̄p ¼ 10

[23] Authors [23] Authors

Circular plate with completely free edge

0 1 13.640 13.642 13.676 13.679

2 25.256 25.259 32.176 32.180

3 28.968 28.980 36.376 36.381

1 1 10.912 10.930 10.916 10.930

2 22.548 22.553 23.112 23.116

3 26.876 26.888 27.148 27.166

2 1 9.3800 9.3901 9.3800 9.3901

2 16.870 16.872 16.860 16.877

3 27.464 27.479 29.252 29.270

Circular plate with hard simply supported edge

0 1 13.664 13.673 13.696 13.701

2 26.412 26.421 32.228 32.235

3 29.940 29.952 40.580 40.601

1 1 4.6480 4.6409 4.6480 4.6409

2 21.236 21.239 21.238 21.243

3 23.132 23.143 23.644 23.656

2 1 9.7001 9.7100 9.7001 9.7100

2 26.680 26.701 26.682 26.699

3 28.720 28.762 30.640 30.660

Circular plate with clamped edge

0 1 24.328 24.339 25.320 25.340

2 28.004 28.015 38.160 38.185

3 33.992 34.012 42.028 42.039

1 1 13.320 13.330 13.324 13.333

2 21.464 21.348 21.472 21.475

3 29.200 29.301 32.760 32.772

2 1 20.652 20.663 20.672 20.680

2 27.392 27.400 27.480 27.490

3 32.932 32.965 37.200 37.246
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stiffness parameters K̄P ¼ 0 and K̄w ¼ 0:1, 1 and 3. The Mindlin results have five-digit accuracy and the shear
correction factor of K2 ¼ p2=12 is assumed. The formulation based on the Mindlin plate theory has been
presented in Appendix A.

A well-known commercially available FEM package was used for the extraction of the frequency
parameters. Before proceeding to the cases for which frequency parameters are calculated for the first time, the
package as well as the solution procedure were examined by solving some problems of the literature. It was
seen that there is an excellent agreement between results of the FEM package and those of the literature. 3-D
solid elements having all six degrees of freedom and 1-D spring elements having two degrees of freedom were
adopted in all of our FEM calculations. A convergence study was conducted to ensure that results of the
calculations are independent from the number of elements. The number of elements for modeling of circular
plates was supposed about 14,000. Furthermore, the number of spring elements for modeling of the Winkler
elastic foundation was selected about 2500.

It is observed that the present results (3-D and Mindlin solutions) are in good agreement with the finite
element solutions.
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Table 6

Comparison of the frequency parameters of annular plate with free–free boundary conditions among the 3-D solution, Mindlin theory and

FEM when R ¼ 0.15 and d ¼ 0.1

CWN (n) MS (s) Method K̄w

0.1 1 3

0 1 FEM 5.1945 10.747 17.310

3-D 5.1867 10.727 17.285

Mindlin 5.1894 10.746 17.320

2 FEM 18.345 20.533 24.731

3-D 18.337 20.501 24.625

Mindlin 18.334 20.537 24.738

3 FEM 32.142 32.152 32.221

3-D 32.037 32.040 32.050

Mindlin – – –

1 1 FEM 9.9002 13.627 17.284

3-D 9.8923 13.590 17.259

Mindlin 9.8948 13.628 17.292

2 FEM 25.205 26.766 27.708

3-D 25.122 26.729 27.695

Mindlin 25.115 26.765 –

3 FEM 27.691 27.691 30.005

3-D 27.691 27.692 29.983

Mindlin – – 30.111

2 1 FEM 4.0341 10.267 17.420

3-D 4.0222 10.253 17.380

Mindlin 4.0239 10.266 17.425

2 FEM 16.155 18.634 20.606

3-D 16.145 18.591 20.523

Mindlin 16.145 18.636 –

3 FEM 20.604 20.605 23.224

3-D 20.523 20.523 23.103

Mindlin – – 23.233

3 1 FEM 6.6708 11.532 18.135

3-D 6.6646 11.511 18.097

Mindlin 6.6679 11.534 18.161

2 FEM 23.718 25.439 28.903

3-D 23.714 25.408 28.807

Mindlin 23.707 25.448 28.946

3 FEM 35.724 35.724 35725

3-D 35.679 35.679 35.679

Mindlin – – –
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On the basis of the present 3-D Ritz formulation, some numerical results are given in Tables 7 and 8 for
annular plates resting on Pasternak elastic foundation with variable inner–outer radius and thickness–radius
ratios, several values of the foundation stiffness parameters, and different combinations of boundary
conditions. The frequency parameters for these annular plates with both outer and inner edges free (F–F) as
well as hard simply supported outer edge and free inner edge (Sh–F) are shown in Table 7, while
thickness–radius ratios d ¼ 0:15 and 0.35, inner–outer radius ratios R ¼ 0:1 and 0.3 and stiffness parameters
K̄wK̄P ¼ ð0; 0Þ, (100, 10) and (1000, 100) are considered. The results of frequency parameters for other
combinations of boundary conditions, including soft simply supported in both edges (SS–SS) and soft simply
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Table 7

The frequency parameters of annular plates resting on Pasternak elastic foundations with different thickness–radius ratio, inner-outer

radius ratio, stiffness parameters and combinations of boundary conditions

d CWN (n) MS (s) ðK̄w; K̄pÞ

R ¼ 0.1 R ¼ 0.3

(0, 0) (102, 101) (103, 102) (0, 0) (102, 101) (103, 102)

Annular plates with both outer and inner edges free (F– F)

0.15 0 1 4.1501 22.185 22.191 3.9441 18.141 18.142

2 16.513 54.668 55.555 18.164 53.467 54.893

3 22.254 61.184 83.706 21.151 62.287 91.646

1 1 9.1657 18.326 18.326 7.8819 18.856 18.857

2 18.336 40.454 40.584 18.870 43.876 44.004

3 23.524 45.891 45.914 23.431 51.137 52.066

2 1 2.5044 14.727 14.727 2.3013 10.193 10.194

2 14.713 27.687 27.691 10.188 27.136 27.140

3 15.014 45.813 45.904 14.105 48.683 48.888

3 1 5.7258 23.961 23.961 5.6331 21.305 21.306

2 21.641 38.699 38.718 20.926 37.442 37.453

3 23.963 58.713 58.983 21.297 51.974 52.129

0.35 0 1 3.7086 9.3064 9.3256 3.5024 7.7076 7.7119

2 9.4978 17.542 18.600 7.7708 17.212 18.044

3 12.122 18.080 19.364 15.048 17.316 19.263

1 1 7.2459 7.8231 7.8251 6.0168 8.0402 8.0430

2 7.8523 15.393 15.919 8.0788 16.208 17.169

3 15.533 16.753 18.576 15.945 16.469 18.344

2 1 2.2901 6.3228 6.3230 2.0817 4.3887 4.3895

2 6.3139 11.720 11.742 4.3703 11.507 11.524

3 10.993 16.759 17.708 10.215 16.651 16.843

3 1 4.8676 10.261 10.261 4.7757 9.1543 9.1552

2 10.268 15.609 15.859 9.1341 15.434 15.611

3 14.686 18.622 19.561 14.266 17.802 18.591

Annular plates with hard simply supported outer edge and free inner edge (Sh– F)

0.15 0 1 2.3292 22.206 22.210 2.2413 18.161 18.162

2 13.032 55.379 55.575 16.082 54.615 54.924

3 22.264 71.326 83.829 18.175 73.922 91.861

1 1 6.4127a 7.7911a 7.7961a 5.7339 8.2907 8.2962

2 7.7862 36.124 36.124 8.2853 36.995 37.013

3 19.763 40.881 41.034 18.712 47.046 47.323

2 1 11.320 15.107 15.111 10.343a 10.354a 10.359a

2 15.088 41.122 41.129 10.768 42.204 42.210

3 27.456 53.720 54.234 25.228 53.702 54.270

3 1 17.079 23.984 23.987 16.626 21.406 21.409

2 23.980 52.713 52.714 21.391 46.198 46.207

3 35.439 66.123 67.710 33.366 65.305 66.661

0.35 0 1 2.1789 9.3315 9.3445 2.1073 7.7291 7.7316

2 9.5072 18.810 19.347 7.7805 17.948 19.292

3 9.9891 19.258 21.402 11.940 19.675 20.210

1 1 3.3439a 3.3527a 3.3552a 3.5585a 3.5679a 3.5706a

2 5.3938 15.403 15.479 4.6998 15.263 15.492)

3 13.629 15.498 15.958 13.109 17.337 18.201
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Table 7 (continued )

d CWN (n) MS (s) ðK̄w; K̄pÞ

R ¼ 0.1 R ¼ 0.3

(0, 0) (102, 101) (103, 102) (0, 0) (102, 101) (103, 102)

2 1 6.4806a 6.4977a 6.4995a 4.4438a 4.4707a 4.4738a

2 8.8067 17.317 17.481 8.3736 17.394 17.734

3 17.629 18.321 18.941 16.383 18.524 18.966

3 1 10.282a 10.287a 10.288a 9.1798a 9.2082a 9.2101a

2 12.338 20.326 20.952 12.056 19.213 19.387

3 22.032a 22.612a 22.619a 19.793 20.754 21.198

a0 ¼ symmetric mode.

Table 8

The frequency parameters of annular plates resting on Pasternak elastic foundations with different thickness–radius ratio, inner–outer

radius ratio, stiffness parameters and different combinations of boundary conditions

d CWN (n) MS (s) ðK̄w; K̄pÞ

R ¼ 0.1 R ¼ 0.3

(0, 0) (102, 101) (103, 102) (0, 0) (102, 101) (103, 102)

Annular plates with soft simply supported in both edges (SS– SS)

0.15 0 1 6.4813 22.270 22.273 9.4531 18.246 18.248

2 20.971 55.768 55.956 18.218 54.948 55.059

3 22.294 78.177 84.681 31.354 91.122 92.139

1 1 7.1325 18.371 18.381 10.149 18.911 18.924

2 18.367 40.468 40.599 18.907 43.927 44.053

3 22.265 45.904 45.925 32.066 46.286 51.588

2 1 11.246 14.751 14.753 10.238a 10.262a 10.273a

2 14.739 27.810 27.831 12.666 27.243 27.263

3 27.671 45.966 46.057 27.233 41.091 49.013

3 1 16.844 23.981 23.984 17.146 21.395 21.405

2 23.976 38.923 38.957 21.363 37.633 37.658

3 35.299 58.893 59.108 30.839 44.800 52.445

0.35 0 1 5.0064 9.4362 9.4420 7.3648a 7.8434a 7.8440a

2 9.5401 19.060 20.086 7.8245 14.871 19.332

3 14.047 21.782 22.621 19.817 21.445 25.532

1 1 5.7444 7.8861 7.8912 7.7921 8.1246 8.1299

2 7.8816 15.428 15.939 8.1152 16.629 17.422

3 15.068 19.425 19.531 18.837 19.991 20.533

2 1 6.3248a 6.3320a 6.3325a 4.4094a 4.4340a 4.4378a

2 8.6775 11.941 11.951 9.4413 11.706 11.714

3 11.936 17.416 17.955 11.692 17.574 18.209

3 1 10.281a 10.286a 10.287a 9.1813a 9.2082a 9.2113a

2 12.098 16.595 16.617 12.224 16.148 16.159

3 16.701 20.197 20.783 13.131 19.174 19.797

Annular plates with soft simply supported outer edge and clamped inner edge (SS– C)

0.15 0 1 7.5948 23.526 23.530 12.335 27.194 27.200

2 22.674 61.354 61.696 27.188 73.475 74.629

3 23.555 78.660 91.859 34.623 87.963 104.75
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Table 8 (continued )

d CWN (n) MS (s) ðK̄w; K̄pÞ

R ¼ 0.1 R ¼ 0.3

(0, 0) (102, 101) (103, 102) (0, 0) (102, 101) (103, 102)

1 1 8.2282a 8.4781a 8.4816a 6.6763 12.266 12.269

2 8.4685 21.730 21.745 12.260 26.690 26.714

3 21.731 43.998 44.144 12.841 48.752 48.856

2 1 11.549 16.099 16.099 14.698 19.453 19.457

2 16.095 28.648 28.673 19.443 30.688 30.723

3 28.466 52.714 53.012 30.709 58.485 59.115

3 1 16.870 24.043 24.046 18.287 25.338 25.342

2 24.039 38.980 39.015 25.330 39.722 39.765

3 35.431 59.880 60.144 39.763 67.018 68.430

0.35 0 1 5.3595 9.9410 9.9486 8.2163 11.539 11.544

2 10.078 19.523 20.660 11.656 20.675 21.667

3 14.274 21.961 22.776 20.173 25.750 25.916

1 1 3.6375a 3.6475a 3.6489a 5.2624a 5.2715a 5.2731a

2 6.2154 9.2971 9.3055 8.6758 11.379 11.390

3 9.3233 16.631 17.392 11.459 18.421 19.280

2 1 6.9003a 6.9023a 6.9025a 8.3410a 8.3510a 8.3522a

2 8.8201 12.274 12.285 10.177 13.102 13.118

3 12.295 18.140 18.960 13.172 19.350 20.400

3 1 10.307a 10.312a 10.313a 10.863a 10.871a 10.872a

2 12.109 16.614 16.637 12.629 16.872 16.900

3 16.725 20.250 20.847 17.044 20.914 21.594

a0 ¼ symmetric mode.

Fig. 6. The frequency parameter b versus the Winkler foundation stiffness K̄w for a thin annular plate (d ¼ 0.01 and R ¼ 0.2) with both

edges (outer and inner) free when (n, s) ¼ (0, 1). (J) 3-D p-Ritz solution; (,) classical plate theory; (&) Mindlin plate theory.
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supported outer edge and clamped inner edge (SS–C) are also given in Table 8 with the same values of
ðK̄w; K̄P; d;RÞ in Table 7. From Tables 7 and 8, it can be concluded that the frequency parameters b for all
cases increase as the foundation stiffness parameters increase while those decrease as inner–outer radius ratio
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increases. Furthermore, the frequency parameters decrease as higher degree of edge constraint (in the order
from free to simply supported to clamped) are applied to the above-mentioned annular plates.

In Figs. 6–11, in order to determine the validity and the range of applicability of the Mindlin and classical
plate results with respect to the change of the Winkler foundation stiffness K̄w, the results of the present 3-D
analysis, the Mindlin theory and the classical plate solution are compared for thin annular plate (d ¼ 0:01 and
R ¼ 0.2) with free–free and free–soft simply supported boundary condition at outer–inner edges when stiffness
parameters K̄wa0 and K̄P ¼ 0. It can apparently be observed that unlike the 3-D results, the frequency
parameters in the Mindlin and the classical plate theories diverge with increasing K̄w. It is worthwhile to
mention that the classical plate theory has lower sensitivity to the Winkler foundation stiffness K̄w than the
Mindlin theory. In other words, as the Winkler foundation stiffness increases, the CLPT curve can follow the
3-D one better in comparison with the Mindlin results for a thin annular plate.
Fig. 7. The frequency parameter b versus the Winkler foundation stiffness K̄w for a thin annular plate (d ¼ 0.01 and R ¼ 0.2) with both

edges (outer and inner) free when (n, s) ¼ (1, 1): (J) 3-D p-Ritz solution; (,) classical plate theory; (&) Mindlin plate theory.

Fig. 8. The frequency parameter b versus the Winkler foundation stiffness K̄w for a thin annular plate (d ¼ 0.01 and R ¼ 0.2) with both

edges (outer and inner) free when (n, s) ¼ (2, 1). (J) 3-D p-Ritz solution; (,) classical plate theory; (&) Mindlin plate theory.
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Fig. 9. The frequency parameter b versus the Winkler foundation stiffness K̄w for a thin annular plate (d ¼ 0.01 and R ¼ 0.2) with

free–soft simply supported at outer–inner edges when (n, s) ¼ (0, 1). (J) 3-D p-Ritz solution; (,) classical plate theory; (&) Mindlin plate

theory.

Fig. 10. The frequency parameter b versus the Winkler foundation stiffness K̄w for a thin annular plate (d ¼ 0.01 and R ¼ 0.2) with

free–soft simply supported at outer–inner edges when (n, s) ¼ (1, 1). (J) 3-D p-Ritz solution; (,) classical plate theory; (&) Mindlin plate

theory.
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In Figs. 12–14, the similar analyses to the ones presented in Figs. 6–11 is performed for a moderately thick
annular plate (d ¼ 0:15 and R ¼ 0.2) with free boundary condition at both edges and stiffness parameters
K̄wa0 and K̄P ¼ 0. In these figures, the curves of the frequency parameter b versus K̄w are shown to compare
the results of the 3-D and the Mindlin solutions. Herein, the critical Winkler foundation stiffness K̄wc is
defined as the largest K̄w in which the frequency parameters obtained from the Mindlin theory have a 10%
difference from the ones acquired by the present 3-D analysis method. From Figs. 12–14, it can be seen that
the frequency parameters in the Mindlin results diverge from ones in the 3-D results when K̄w4K̄wc, while
the frequency parameters in 3-D solution converge to the constant values. It should be pointed out that
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Fig. 11. The frequency parameter b versus the Winkler foundation stiffness K̄w for a thin annular plate (d ¼ 0.01 and R ¼ 0.2) with

free–soft simply supported at outer–inner edges when (n, s) ¼ (2, 1). (J) 3-D p-Ritz solution; (,) classical plate theory; (&) Mindlin plate

theory.

Fig. 12. The frequency parameter b versus Winkler foundation stiffness K̄w for moderately thick annular plate (R ¼ 0.2) with both edges

(outer and inner) free and thickness–radius ratio d ¼ 0.15. (a) (n, s) ¼ (0, 1); (b) (n, s) ¼ (0, 2). (&) Mindlin plate theory; (J) 3-D p-Ritz

solution.
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in the Mindlin theory, the foundation is applied on the middle surface of the plate but not on the lower
surface. That is why the Mindlin theory gives incorrect results as the Winkler foundation stiffness takes the
large values. In Figs. 12–14, for moderately thick annular plate with both edges free, the values of the critical
Winkler foundation stiffness K̄wc are about 9.38 and 1.17 when ðn; sÞ ¼ ð0; 1Þ and (0, 2), 7.52 and 5.49 when
ðn; sÞ ¼ ð1; 1Þ and (1, 2) as well as 1.54 and 11.32 when ðn; sÞ ¼ ð2; 1Þ and (2, 2).

The variation of the frequency parameters against the Winkler foundation stiffness K̄w is presented in
Figs. 15–17 for an annular plate resting on Winkler elastic foundation (K̄wa0, K̄P ¼ 0) with both edges free
while the inner–outer radius ratio is selected from 0.1 to 0.4 and thickness–radius ratio d is set to be 0.1. Each
curve in these figures has 18 sample points.
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Fig. 13. The frequency parameter b versus Winkler foundation stiffness K̄w for moderately thick annular plate (R ¼ 0.2) with both edges

(outer and inner) free and thickness–radius ratio d ¼ 0.15. (a) (n, s) ¼ (1, 1); (b) (n, s) ¼ (1, 2). (&) Mindlin plate theory; (J) 3-D p-Ritz

solution.

Fig. 14. The frequency parameter b versus Winkler foundation stiffness K̄w for moderately thick annular plate (R ¼ 0.2) with both edges

(outer and inner) free and thickness–radius ratio d ¼ 0.15. (a) (n, s) ¼ (2, 1); (b) (n, s) ¼ (2, 2). (&) Mindlin plate theory; (J) 3-D p-Ritz

solution.
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Fig. 15 shows the relationship between the frequency parameter b and the Winkler foundation stiffness K̄w

for various values of the inner–outer radius ratio. As it is expected, the frequency parameter increases with
increasing K̄w. It will also be predictable that the frequency parameter for a given Winkler foundation stiffness
becomes smaller when the inner–outer radius ratio increases, as shown in Fig. 15(a). However, considering
Fig. 15(b), it is worth noting that for vibrating mode ðn; sÞ ¼ ð0; 2Þ, the frequency parameter in the some ranges
of the Winkler foundation stiffness becomes larger as the inner–outer radius ratio increases. Moreover, this
phenomenon can be seen in the vibrating modes ðn; sÞ ¼ ð1; 1Þ and (1, 2) in Fig. 16. The most effective range of
the Winkler foundation stiffness in increasing the frequency parameters is from 1 to 101 for Fig. 15(a) and
from 101 to 102 for Fig. 15(b). The effective ranges of the K̄w in the increase of the frequency parameters can
also be seen for the other vibrating modes in Figs. 16 and 17.
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Fig. 15. The frequency parameter b versus Winkler foundation stiffness K̄w for moderately thick annular plate with both edges (outer and

inner) free and thickness–radius ratio d ¼ 0.1. (a) (n, s) ¼ (0, 1); (b) (n, s) ¼ (0, 2). (J) R ¼ 0.1; (&) R ¼ 0.2; (B) R ¼ 0.3; (,) R ¼ 0.4.

Fig. 16. The frequency parameter b versus Winkler foundation stiffness K̄w for moderately thick annular plate with both edges (outer and

inner) free and thickness–radius ratio d ¼ 0.1: (a) (n, s) ¼ (1, 1); (b) (n, s) ¼ (1, 2). (J) R ¼ 0.1; (&) R ¼ 0.2; (B) R ¼ 0.3; (,) R ¼ 0.4.

S. Hosseini Hashemi et al. / Journal of Sound and Vibration 311 (2008) 1114–11401134
In order to show the deflection of the thick annular plate resting on Pasternak foundation, 2-D plots and
their corresponding 3-D mode shapes are depicted in Figs. 18–21 for the displacement components in the
radial (c̄1), circumferential (c̄2) and thickness (c̄3) directions.

For each of four circumferential wavenumbers (n ¼ 0, 1, 2, and 3), the first mode shape (s ¼ 1) of a
clamped–clamped annular plate (R ¼ 0:2) resting on Pasternak foundation with thickness–radius
ratio d ¼ 0:2 and stiffness parameters K̄w ¼ 25 and K̄P ¼ 2:5 is illustrated in Fig. 18. In order to show
thickness shear motion, the through-thickness mode shape of the displacement (c̄3) which is normalized by
dividing its maximum value is plotted in Fig. 19 with respect to the non-dimensional coordinate z� ¼ z=h

when r� is set to be 0.25. It is worth noting that the maximum thickness shear motion occurs in what value of
z� (see Table 9).
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Fig. 17. The frequency parameter b versus Winkler foundation stiffness K̄w for moderately thick annular plate with both edges (outer and

inner) free and thickness–radius ratio d ¼ 0.1: (a) (n, s) ¼ (2, 1); (b) (n, s) ¼ (2, 2). (J) R ¼ 0.1; (&) R ¼ 0.2; (B) R ¼ 0.3; (,) R ¼ 0.4.

Fig. 18. Deformed mode shapes and frequency parameters of a clamped–clamped annular plate resting on Pasternak elastic foundation

(R ¼ 0.2, d ¼ 0.2, K̄w ¼ 25 and K̄P ¼ 2:5). (a) Frequency parameter ¼ 7.3898, mode (0, 1); (b) frequency parameter ¼ 4.7088, mode (1,1);

(c) frequency parameter ¼ 5.7071, mode (2, 1); (d) frequency parameter ¼ 6.8481, mode (3,1).
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Fig. 19. Thickness mode shapes of the normalized displacement (c̄3) versus the normalized thickness (z�) for the same annular plate

mentioned in Fig. 18.

Fig. 20. Deformed mode shapes and frequency parameters of a clamped–free annular plate resting on Pasternak elastic foundation

(R ¼ 0.2, d ¼ 0.2, K̄w ¼ 25 and K̄P ¼ 2:5). (a) Frequency parameter ¼ 5.9929, mode (0, 1); (b) frequency parameter ¼ 3.5690, mode (1,1);

(c) frequency parameter ¼ 4.3238, mode (2, 1); (d) frequency parameter ¼ 6.2340, mode (3,1).
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Figs. 20 and 21 presents deformed and thickness shape modes for the annular plate with the same values of
ðK̄w; K̄P; d;RÞ in Fig. 18 when the annular plate is constrained as a clamped–free in the outer and inner edges,
respectively. Similarly, the amount of the maximum thickness shear motion for various vibrating modes ðn; sÞ
is presented in Table 9.
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Fig. 21. Thickness mode shapes of the normalized displacement (c̄3) versus the normalized thickness (z�) for the same annular plate

mentioned in Fig. 18.

Table 9

The values of the normalized thickness z� for occurring maximum shear thickness motion

Boundary conditions (outer–inner edges) Normalized thickness z�

(0, 1) (1, 1) (2, 1) (3, 1)

Clamped–clamped 0.25 0.50 0.39 0.24

Clamped–free 0.32 �0.28 0.50 0.50
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4. Conclusions

Based on the small strain and linear elasticity theory, a comprehensive study of the 3-D vibration analysis of
annular plates resting on Pasternak elastic foundation with different combinations of free, soft simply
supported, hard simply supported and clamped boundary conditions at the inner and outer edges was
investigated. The Ritz method is applied to derive the eigenvalue equation. Due to the cylindrical nature of the
annular plate geometry, the formulation was carried out in the cylindrical polar coordinates. Apart the
convergence tests performed and the new results presented, the influence of different parameters of the annular
plates on the ill-conditioning phenomenon in the mass matrix was studied and the exciting results were
graphically presented. The success of the present analysis was also verified through comparisons with
corresponding numerical results [23], the converged finite element solution results obtained using a well-
known commercially available FEM package as well as the Mindlin results presented as a new study in this
paper. The influence of the foundation stiffness parameters, thickness–radius ratio, inner–outer radius ratio
and different combinations of boundary conditions on the frequency parameters of the annular plates was
discussed. The validity and the range of applicability of the results obtained from the Mindlin and classical
plate theories for thin and moderately thick annular plate with different values of the Winkler foundation
stiffness parameter were determined through comparing them with those obtained from the present 3-D p-Ritz
solution. It was proven that researchers would not be able to use the Mindlin and classical plate theories when
the large values of the Winkler foundation stiffness are considered. Finally, 2- and 3-D plots of mode shapes
were given for some vibrating modes. The 3-D mode shapes surround flexural, thickness twist and thickness
shear motions. All of the results presented in this paper can be served as benchmark results for researchers to
validate their numerical methods (i.e. classical and Mindlin theories as well as finite element method) and also
for engineers to use such plates in their structures in the future.
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Appendix A. The formulation of the Mindlin plate theory

A flat, isotropic and moderately thick annular plate with outer radius ao, inner radius ai, thicknesses h,
Young’s modulus E, shear modulus G, and Poisson ration n and resting on Pasternak elastic foundation is
considered. The cylindrical coordinate system ðr; y; zÞ and geometry of plate is as defined in Fig. 1. In the
Mindlin plate theory, three independent quantities namely W, Cr and Cy are introduced to represent the
deformations of the plate. For free vibration, W, Cr and Cy have the following forms:

Crðr; y; tÞ ¼ �zc1ðr; yÞ e
jot,

Cyðr; y; tÞ ¼ �zc2ðr; yÞ e
jot,

W ðr; y; tÞ ¼ c3ðr; yÞe
jot, ðA:1Þ

where t is the time, o denotes the natural frequency of vibration and j ¼
ffiffiffiffiffiffiffi
�1
p

.
The Lagrangian energy functional P of the Mindlin plate is defined as follows:

P ¼ Vmax � Tmax þ P̄. (A.2)

Introducing the following non-dimensional coordinate

r� ¼
r

ao

; c̄3ðr; yÞ ¼W ðr; yÞ=ao, (A.3)

Vmax;Tmax and P̄ are given, respectively, by
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Tmax ¼
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P̄ ¼
1

2
ro2a3

oh

Z 1
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2
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� �
r� dydr, (A.6)

in which, r is the plate density per unite volumes, D ¼ Eh3=½12ð1� n2Þ� is flexural rigidity of plate, K2 is the
shear correction factor, d ¼ h=ao is the thickness–radius ratio of the plate, K̄w ¼ kwa4

0=D is the Winkler
foundation stiffness and K̄P ¼ kpa2

0=D is constant showing the effect of shear interaction of the vertical
elements.

The transverse and rotations may be approximate by set of two dimensional polynomial that is function in
ðr; yÞ plan as

c̄1ðr
�; yÞ ¼ cosðnyÞG1ðr

�Þ
XN1

i¼0

aiðr
�Þ

i,

c̄2ðr
�; yÞ ¼ sinðnyÞG2ðr

�Þ
XN1

i¼0

biðr
�Þ

i,

c̄3ðr
�; yÞ ¼ cosðnyÞG3ðr

�Þ
XN1

i¼0

ciðr
�Þ

i, ðA:7Þ
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Table A1

Boundary functions for different boundary conditions

Boundary condition G1ðr
�Þ G2ðr

�Þ G3ðr
�Þ

Free edge (F) 1 1 1

Simply supported (S) 1 1 ðr� � 1Þ

Clamped boundary condition (C) ðr� � 1Þ ðr� � 1Þ ðr� � 1Þ

S. Hosseini Hashemi et al. / Journal of Sound and Vibration 311 (2008) 1114–1140 1139
where the non-negative integer n represents the circumferential wavenumber of the corresponding mode shape;
a, b and c are the corresponding unknown coefficients associated with Ritz function. and G1½r

��, G2½r
��, and

G3½r
�� are basic function corresponding to c̄1, c̄2 and c̄3 respectively. The basic functions are chosen to satisfy

geometric boundary conditions, as shown in Table A1.
The eigenvalue problem is formulated by minimizing the free vibration frequencies with respect to the

arbitrary coefficients ai, bi and ci. Minimizing the above functional with respect to the coefficients, i.e.

qP
qaij

¼ 0;
qP
qbij

¼ 0;
qP
qcij

¼ 0, (A.8)

lead to the following eigenfrequency equation,

ðK� b2MÞC ¼ 0, (A.9)

where

K ¼

k11 k12 k13

k22 k23

sym k33

2
64

3
75; M ¼

m11 0 0
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3
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>;. (A.10)
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